Topology Optimization of Structures with Contact Constraints by using a Smooth Formulation and a Nested Approach
نویسندگان
چکیده
1. Abstract In this paper a method for topology optimization of structures in unilateral contact is developed. A linear elastic structure that is unilateral constrained by rigid supports is considered. The supports are modeled by Signorini’s contact conditions which in turn are treated by a smooth approximation. This approximation must not be confused with the well-known penalty approach. The state of the system, which is defined by the equilibrium equations and the smooth approximation, is solved by a Newton method. The design parametrization is obtained by using the SIMP-model. The minimization of compliance for a limited value of volume is considered. The optimization problem is solved by a nested approach where the equilibrium equations are linearized and sensitivities are calculated by the adjoint method. The problem is then solved by SLP. The LP-problem is in turn solved by an interior point method that is available in Matlab. In order to avoid mesh-dependency the sensitivities are filtered by Sigmund’s filter. The method is implemented by using Matlab and Visual Fortran, where the Fortran code is linked to Matlab as mex-files. The implementation is done for a general design domain in 2D by using fully integrated isoparametric elements. The implementation seems to be very efficient and robust. 2.
منابع مشابه
An iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach
Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of pro...
متن کاملIsogeometric Topology Optimization of Continuum Structures using an Evolutionary Algorithm
Topology optimization has been an interesting area of research in recent years. The main focus of this paper is to use an evolutionary swarm intelligence algorithm to perform Isogeometric Topology optimization of continuum structures. A two-dimensional plate is analyzed statically and the nodal displacements are calculated. The nodal displacements using Isogeometric analysis are found to be ...
متن کاملISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES CONSIDERING WEIGHT MINIMIZATION AND LOCAL STRESS CONSTRAINTS
The Isogeometric Analysis (IA) is utilized for structural topology optimization considering minimization of weight and local stress constraints. For this purpose, material density of the structure is assumed as a continuous function throughout the design domain and approximated using the Non-Uniform Rational B-Spline (NURBS) basis functions. Control points of the density surface are...
متن کاملVOLUME MINIMIZATION WITH DISPLACEMENT CONSTRAINTS IN TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES
In this paper, a displacement-constrained volume-minimizing topology optimization model is present for two-dimensional continuum problems. The new model is a generalization of the displacement-constrained volume-minimizing model developed by Yi and Sui [1] in which the displacement is constrained in the loading point. In the original model the displacement constraint was formulated as an equali...
متن کاملTOPOLOGY OPTIMIZATION OF PRETENSIONED CONCRETE BEAMS CONSIDERING MATERIAL NONLINEARITY
In this paper, the bi-directional evolutionary structural optimization (BESO) method is used to find optimal layouts of 3D prestressed concrete beams. Considering the element sensitivity number as the design variable, the mathematical formulation of topology optimization is developed based on the ABAQUS finite element software package. The surface-to-surface contact with a small sliding between...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009